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L E W R  TO THE EDITOR 

Disorder solution of a general checkerboard Ising model in a 
field and validity of the decimation approach 

N-C Chaot and F Y WuS 
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 16 April 1985 

Abstract. We examine a problem arising in the determination of the disorder solution 
using the method of exact decimation for spin models in a field. The problem concerns 
the validity of the change of boundary conditions, a crucial step essential to the decimation 
approach. We study this validity question for a general checkerboard Ising lattice which 
has crossing and multispin interactions as well as a magnetic field. Our study leads to an 
equation determining the disorder solution and a sufficient condition ensuring the validity 
of the solution. The nearest-neighbour model is re-examined in light of these discussions. 

Recently, in an application of the method of exact decimation (Jaekel and Maillard 
1985a, Wu 1985), Jaekel and Maillard (1985b) obtained the disorder solution for the 
Ising and Potts models with a field on the checkerboard lattice. The purpose of this 
letter is to identify a difficulty inherent in applying the decimation approach to problems 
with a field, and propose a solution. The question, which was not analysed by Jaekel 
and Maillard (1985b), is whether the bulk partition function is affected by the change 
of boundary conditions introduced in a crucial step of the decimation approach. We 
use the Ising model on a general checkerboard lattice as an example, and conclude 
that there is no simple way to ascertain the general validity of the disorder solution. 
However, a sufficient condition can be written down, and the Jaekel-Maillard solution 
is re-examined in light of these discussions. We also extend the disorder solution for 
the checkerboard king model to include both crossing and multispin interactions. 

Consider N Ising spins on a square lattice with a Hamiltonian having a checker- 
board-type symmetry as shown in figure 1. The four spins ul, U,, u3 and U ,  surrounding 
each shaded square in figure 1 interact with a spin-reversal invariant interaction, which 
can be written, in the most general case, as3 

E ( U I  ~ 2 ~ 3 ~ 4 )  = - Jo - J1 U,  - J; ~ 3 ~ 4  - J ~ u ~ u ,  - J ; U ~ U ~  

- J u ~ u ~ -  J ' u ~ u ~ -  J ~ U ~ U Z C ~ U ~ .  (1) 
The interactions J are depicted in figure 2. In addition, we assume the presence of 
an external magnetic field H. Our goal is to evaluate the partition function for the 
Ising lattice. Jaekel and Maillard (1985b) considered the special case J = J' = J4 = 0, 

t On leave from Universidade Federal do Rio Grande do Norte, Departamento de Fisica, Natal, Rio Grande 
do Norte, Brasil. 
t Work supported in part by NSF Grant No DMR-8219254. 
8 The restriction to spin-reversal invariant interactions is not essential to our conclusions. 
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Figure 1. General checkerboard lattice. Each shaded square consists of interactions shown 
in figure 2. 

- J, 

Figure 2. Interaction ( 1 )  contained in a shaded square in figure 1. (The four-spin interaction 
Ja is not shown.) 

and Wu (1985) has obtained the disorder solution in the triangular limit J ,  = 03 and 
with three-spin interactions. 

We assume a boundary condition which is periodic in the horizontal direction and 
open in the vertical direction. (The lattice is wound on a cylinder.) Further, we remove 
all - J {  interactions along the upper boundary and change the magnetic field applied 
to the spins on the upper boundary to alternate new values HI and H2.  The removal 
of the - J ;  interactions permits us to carry out the spin summations over U ,  and u2 
(cf figure 1) for each shaded square in the first row. Now we require the summations 
to yield 

C w('1(+2u3u4) e x p ( ~ , u ~ + L ~ u ~ ) =  ~ e x p ~ ( ~ , - ~ ) u ~ + ( ~ , - ~ ) u ~ l  (2) 
UIU2 

where L = H /  kT, Li = Hi/ KT, and 

w ( u, ~ 2 u 3  u4) = exp[ - E ( u1 u2u3u4)/ k TI. (3) 
The summation (2) decimates all shaded squares in the first row, leaving a lattice 

which is an exact copy of the original one except that it has one less row. Furthermore, 
(2) implies that the new boundary spins again have alternate fields L1 and L2, and 
we can repeat the decimation process by summing over the new boundary spins. 
Continuing in this fashion, we eventually decimate all spins except those in the last 
row. Now each decimated shaded square contributes a factor F to the partition function 
2, and the contribution from the last row of spins can be neglected in the bulk limit. 
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We then obtain the following expression for the partition function per site 

where we have allowed the possibility that F may be negative. 
Explicitly, (2) is a set of four equations 

where 
2Li x i = e  , i = 1,2, 

and 

W ]  = w(++++), w,= w(+ -+ - ) ,  w3 = w(++-- ) ,  w4= (+--+) 

w5 = w(+-++) ,  wg= w(+++-) ,  w7 = w (  -+++), wg = (++-+). 
(7) 

From (5) we can solve, in principle, for the four unknowns x,, x,, F and L in terms 
of the Boltzmann weights w. The partition function is then given by (4) with L given 
by the solution of (5). 

Before examining (5) for solutions, we consider the validity of the change of 
boundary conditions used in arriving at (4), a question not analysed by Jaekel and 
Maillard (1985b). The crux of the matter is that we wish to ascertain that the change of 
boundary conditions does not affect the bulk partition function so that (4) is the true 
solution. Certainly, the change of boundary fields to new values L, and L2 (and the 
deletion of the boundary J :  interactions) will not affect the bulk properties as long as 

xi > 0, i = l , 2 .  (8) 

For, in this case, the LHS of (5) is strictly positive and the usual proof of boundary 
independence (see, e.g., Fisher 1964) can be carried through. Therefore, (8) is certainly 
a sufficient condition to ensure the validity of the disorder solution (4). 

However, it is not clear whether (8) is always a required condition. An explicit 
example is the triangular limit of K1 = 00 considered by Wu (1985). In the present 
notation we have w, = w4 = w5 = w7 = 0 and it is sufficient for the positivity of the LHS 
of (5) to require only xIx2>0, a condition obtained more directly by Wu (1985). 
Indeed, in this case (5) admits solutions xi 0, F < 0, eZL < 0; the latter inequality 
being permitted since the partition function is now a polynomial of e4L. It is clear 
then, for K1 large at least, some non-positive xi’s are valid solutions as a consequence 
of a global nature beyond the description of (5). More generally, (5) admits solutions 
xi 0, for real F and L, provided that we permit both sides of some equations in ( 5 )  
to be negative. While this makes some Boltzmann factors negative, the bulk partition 
function may still very well remain unchanged. It appears that it would be a difficult 
task to determine a priori if a particular solution of (5) is valid, other than comparing 
the resulting K with the exact solution, if known. The best one can say, it seems, is 
that (8) provides a sufficient criterion for testing the decimation approach. Con- 
sequently, extreme caution must be exercised in using the decimation approach for 
problems with a field. 
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We now examine ( 5 ) .  The solution of ( 5 )  in the most general case involves solving 
a high degree algebraic equation, and is therefore complicated. However, one can 
readily eliminate x1 and x, by taking the determinant of (9, and this leads to the 
following relation between L and F 

(9) 
F4 - 2w2F3 + ( w:+ W: - W: - w:)F2 - 2D,F+ 0 2  

W1 F3 + ( W5W6 + W7Wg - 2 W 1  W2)  F2 - D 3 F  
2 cosh 2L= 

The disorder solution for the nearest-neighbour model (J = J’ = J4 = 0 )  has been 
treated by Jaekel and Maillard (1985b). In this case we have 

w1w2= w3w4= w 5 w 6 =  W , W ~ = ~ ’ ~ O  (10) 
and F can be obtained directly from (9, by multiplying the first and last two equations 
respectively, yielding 

F2 = -4e2K~sinh 2K1 sinh 2K2 sinh 2K:lsinh 2K;. 

K1 K2K K ;  < 0 

(11) 

(12) 

The condition (8) then implies that we are dealing with a frustrated model 

and (9) gives rise to an expression for the magnetic field L after substituting with (1 1). 
One also finds that xi satisfies the quadratic equation 

xf+A+xi+l =0, i = l , 2  (13) 
where 

A1 = [a2+ ( b  + dF1)’- (cF~)~]/u( b + dF1) 

a = b-‘ = exp( K1 + K,) 
c = d-’ = exp(- K + K ; )  

sinh 2 K1 sinh 2 K ,  
sinh 2 K ; sinh 2 K 

F,=sgn(K;) 

and A, is given by a similar expression with K 2  and K; interchanged. The sufficient 
condition (8) can now be rewitten, using (13), as 

Id + ( a  + b)F;’\  d c 

(d  + ( a  + b)F;’ \  a c 

for b + dFl > 0 

for b +  dFl < 0 

and similar expressions with K 2  and K ;  interchanged. The solution given by 
expressions (4) and (1 1) is valid if both of these conditions are satisfied. 
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In summary, we have studied the disorder solution for a general checkerboard 
Ising model in a field, and examined the difficulty associated with the change of 
boundary conditions, a step essential to the method of decimation. We obtained a 
sufficient criterion to ensure the validity of the change of boundary fields, and hence 
the decimation approach; we also obtained an equation for determining the disorder 
solution. The nearest-neighbour model considered by Jaekel and Maillard (1985b) 
has been re-examined in light of these discussions. 

We wish to thank J M Maillard and M T Jaekel for sending a preprint prior to 
publication. NCC gratefully acknowledges the support of the Brazilian Conselho 
Nacional de Desenvolvimento Cientifico e Tecnol6gico (CNPq). 
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